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Abstract

Air displacement plethysmography (ADP) has been widely utilised to track body composition because it is
considered to be practical, reliable, and valid. Pea Pod is the infant version of ADP that accommodates infants up to
the age of 6 months and has been widely utilised to assess the body composition of full-term infants, and more
recently pre-term infants. The primary goal of this comprehensive review is to 1) discuss the accuracy/
reproducibility of Pea Pod in both full- and pre-term infants, 2) highlight and discuss practical challenges and
potential sources of measurement errors in relation to Pea Pod operating principles, and 3) make suggestions for
future research direction to overcome the identified limitations.
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Background
Early postnatal growth is a major determinant of short-
and long-term health outcomes, for both full-term and
pre-term infants. The significance of neonatal nutritional
management and postnatal growth lies in their effect on
infant survival, neurodevelopment and later metabolic
function. Postnatal faltering growth is associated with
neurodevelopment impairment, especially in preterm in-
fants, and increased risk of cardiometabolic disease, par-
ticularly after fetal growth restriction [1, 2]. Rapid
postnatal growth is also associated with increased risk of
metabolic syndrome or its determinants [3–7]. These
complex effects are influenced by differential growth in
soft tissue compartments, namely, fat mass (FM) and
lean mass (LM). Growth that involves relatively greater
gains in LM appears to be protective for brain develop-
ment [8, 9] and metabolic function [9], whereas acceler-
ated gain in FM, especially centrally and in the first
6 months, is associated with childhood obesity [10]. Pre-
term infants appear to be particularly susceptible to both
postnatal growth failure and central fat deposition [5].

These observations highlight the importance of assessing
body composition and not just total mass when moni-
toring growth in infants.
There are a number of techniques available to measure

body composition in infants, including dual energy X-
ray absorptiometry (DXA), bioelectrical impedance ana-
lysis (BIA), isotope dilution, magnetic resonance imaging
(MRI), and air displacement plethysmography (ADP)
[11]. Local FM deposits may also be quantified by ultra-
sound [12]. ADP has gained popularity due to availabil-
ity, feasibility and acceptability to parents [13]. ADP
utilizes the inverse relationship between pressure and
volume in two enclosed chambers – employing the gas
law of Boyle and Poisson – that allows for the calcula-
tion of body density [14]. A two-compartment model is
derived assuming a fixed density of fat (0.9007 g/ml)
[15] and from age- and sex-specific estimates of fat free
mass (FFM) density.
There are two commercially available ADP body com-

position systems; one for adults (Bod Pod) and one for in-
fants (Pea Pod) (Cosmed, Rome, Italy). While Bod Pod
houses both children aged > 2 years old and adults, Pea
Pod accommodates infants from birth until approximately
6 months of age (body weight ≤ 10 kg). Recently, Pea Pod
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has also been employed to assess the body composition of
pre-term infants from 30 weeks’ gestation, and may be a
viable method for close monitoring of growth in these
infants.
Since the introduction of Pea Pod in 2003 [14, 16, 17]

and its validation in 2004 [18], a large number of tech-
nical and clinical research papers utilising Pea Pod have
been published. Pea Pod has also been included in sev-
eral recent reviews on body composition, including the
utility of ADP technique from infancy to adulthood [19],
changes in body composition over the first six months
after birth utilising different assessment methods [4, 20],
and a comparison of different body composition assess-
ment tools in infancy [11]. However, to our knowledge,
no comprehensive review of the use of Pea Pod in both
full- and pre-term infants is available.
This review will focus exclusively on studies that have

assessed body composition of infants using Pea Pod, in-
cluding both full- and pre-term infants. We will sum-
marise the published papers, with sections devoted to its
accuracy relative to criterion methods, reproducibility,
and to practical challenges associated with the use of
Pea Pod in clinical settings and studies. From there,
we will make suggestions for future research direc-
tions to address any identified limitations. At the out-
set, we present an overview of body composition
measures, including assessment of accuracy and re-
producibility, following which we describe the results
of the review.

Body composition measures
Body composition may be described using two-, three-
and four-compartment models. The two-compartment
model [21] divides body weight into FM and FFM (with
assumptions made regarding the density of FM and
FFM) and ignores the interindividual variation in FFM
composition. The three-compartment model [22] is
based on measurements of body density and total body
water, and assumes a constant mineral to protein ratio
in the dry FFM and makes no assumptions about the hy-
dration of FFM. The four-compartment model [23] di-
vides the body weight into fat, water, mineral, and
protein, and is the most robust and sensitive to interin-
dividual variability in the composition of FFM. Accord-
ingly, the four-compartment model has less error than
other models.
Obesity is defined as an excess of body fat that ad-

versely affects health [20]. Body mass index (BMI, kg/
m2) has long been used in clinical practice and
epidemiological studies as an indicator of adiposity.
However, BMI has been shown to have inconsistent
relationship with disease risk and mortality. For
example, Nagayama et al. [24] reported an inverse
relationship between BMI and cardiometabolic fitness in

healthy Japanese adults, whereas Flegal et al. [25]
showed that all-cause mortality rate was lower in over-
weight than normal weight individuals.
This inconsistency may reflect the variable relationship

between BMI and adiposity, with the latter being more
closely related to disease risk [26]. For example, in a
study of 709 adults aged 20–94 years (of both sexes and
different ethnicities), Gallagher et al. [26] showed that
BMI alone explained only 25% of the between-individual
variability in adiposity. Further, Zeng et al. [27] showed
that adiposity, but not BMI, was independently associ-
ated with cardiovascular risk factors. Even in normal
weight individuals, higher adiposity has been shown to
be associated with adverse cardiometabolic health out-
comes, such as metabolic syndrome, dyslipidemia,
hypertension, and cardiovascular disease [28].
In children, increases in BMI can reflect increases in

FFM rather than increases in FM due to the rapid
growth of musculoskeletal tissues [29]. A recent system-
atic review and meta-analysis found that BMI had high
specificity but low sensitivity for detection of excess adi-
posity in children, and thus BMI failed to identify > 25%
of children with excess FM [30]. Hetherington-Rauth et
al. [31] compared indirect measures of adiposity (includ-
ing BMI) with direct measures (DXA FM% and Fat Mass
Index, FMI) in relation to cardiometabolic risk factors in
children. Although the authors reported that anthropo-
metric measures performed as well as DXA measures
did, addition of direct measures of adiposity to indirect
measures may be advantageous for predicting cardiomet-
abolic risk factors such as insulin resistance [31], a find-
ing reported by others [29, 32]. Similarly, in both full-
term and pre-term infants, BMI was shown to have a
weak association with FM% (defined as FM/weight*100)
[33, 34], though the relationships were slightly stronger
in full-term infants [35]. Thus, in infants and children,
BMI appears to be a poor measure of adiposity, and
“normal” BMI may still be associated with excess fat
mass for size, particularly if LM is low [36].
Adiposity is often referenced to total mass (e.g, whole-

body FM%) but this is statistically problematic given that
fat mass is included in both numerator and denominator
[37]. As body fat mass increases, FM% does not increase
proportionately (depending on relative growth in FFM),
resulting in underestimation of adiposity. The growth
velocity of the different soft tissue compartments may
be variably affected by nutritional interventions and
factors such as age, sex, pubertal status, and ethnicity
[38]. To overcome these problems, Van-Itallile [39]
advocated referencing of FM and FFM to height
squared, giving a FM index (FMI) and FFM index
(FFMI), which in adults effectively normalises soft tis-
sue mass for height and allows for comparison be-
tween individuals of different size.
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A similar approach has also been recommended in
children [40–42], although second order indices may not
render soft tissue mass independent of size [40]. This is
particularly important when comparing body compos-
ition between infants of differing length, especially in
pre-term infants whose lower absolute FFM is partly due
to their shorter body length. Two studies have reported
centiles for FMI and FFMI in the first 6 months after
birth, one using DXA in term and preterm infants [35]
and the other using Pea Pod in term infants [43]. How-
ever, neither study reported if these indices remained
correlated with length, so it is unclear if the measures
used adequately accounted for differences in body size.
This problem can be overcome with the use of sex-
specific FM and FFM z-scores for length [40].

Accuracy and reproducibility
Evaluation of any quantitative assessment technique, in-
cluding body composition systems, comprises of an
examination of its accuracy and reproducibility. Accur-
acy should be determined against an established criter-
ion method that measures the same physical properties.
Hydrostatic weighing is commonly used to validate ADP
techniques, but this is not suitable for infants be-
cause it requires submerging them in water. Thus,
for Pea Pod alternative techniques have been used,
including tissue phantoms [17], deuterium dilution
[18], DXA [44] and combined techniques with multi-
compartment models [45].
Tissue phantoms are constructed from animal tissue

using fat and muscle compartments, and the compos-
ition is usually determined from chemical analysis. DXA
is a non-invasive technique that provides whole-body
and regional estimates of three main components: bone
mineral, bone-free FFM and FM [46]. DXA relies on the
differential absorption of x-rays of two different energies
and bone edge detection algorithms to calculate bone
area and mineral content, and FM and FFM [46]. Iso-
tope dilution, a standard technique for measuring total
body water, involves administration of a known dose of
isotope to a subject, allowing the isotope to equilibrate
and enrich within the body water compartments (includ-
ing saliva, urine or blood), and then measuring the iso-
tope amount [47]. Isotope serves as a marker for total
body water, from which FFM (using a specific hydration
factor) and FM can be calculated [46].
Statistically, accuracy is commonly assessed by Bland-

Altman analysis, [48] which relates the differences be-
tween two techniques to the mean value of the mea-
sures. Bias is the mean difference between the
techniques and 95% of limits of agreement indicate the
possible range of differences between the techniques. Re-
producibility of paired measures can also be assessed by
Bland-Altman analysis or for multiple measures of the

same subject or phantom, by the coefficient of variation,
which is the standard deviation as a percentage of the
subject or phantom mean value.

Method
We performed a literature search covering studies pub-
lished in PubMed from 2003 up to September 2017. Be-
cause the first evaluation study of Pea Pod was
published in 2003 we limited our search strategy to in-
clude papers published after 2003 to September 2017.
Key search terms included “air displacement plethys-
mography” OR “Pea Pod” AND (infant OR infancy). Re-
views and non-English papers were excluded. We also
excluded papers that included non-human species. How-
ever, those studies that used animal species to investigate
the accuracy/reproducibility of Pea Pod were included.

Results
Our literature search identified 141 papers, including 13
non-human studies, three non-English papers, and 17 re-
views, leaving 108 papers for title and abstract checking.
Of these, 26 papers were excluded because they referred
to Bod Pod (n = 7), reported a study protocol (n = 5), or
were unrelated to Pea Pod (n = 14). Thus 82 papers were
included in the final review, two of which were accuracy
studies using animal tissues and live animals, four were
accuracy/reproducibility studies in full-term infants, two
were accuracy/reproducibility studies in pre-term infants,
and 74 were clinical studies using Pea Pod to assess the
body composition of either full-term infants, pre-term in-
fants or both (Fig. 1). Characteristics of included valid-
ation studies are presented in Table 1.

Accuracy and reproducibility of pea pod
Studies using animal tissues and/or live animals

Accuracy As part of the development of Pea Pod, Sainz
and colleagues [17] were the first to evaluate the accur-
acy of Pea Pod against chemical analysis and hydrostatic
weighing of 24 bovine tissue phantoms, and to assess its
potential use in paediatric body composition assessment.
Tissue phantom mass (1.39 to 9.95 kg) and fat content
(2.1% to 34.4%) approximated that of infants between
birth and six months of age. Compared with chemical
analysis, the bias for FM% was − 0.04% and was constant
across the FM% range (indicating no systematic bias),
and the 95% limits of agreement were − 1.22% to 1.13%.
Frondas-Chauty et al. [44] compared Pea Pod measures
of FM% with biochemical analysis in 12 piglets at 2 to
21 days of age (weight range 1.03 to 8.49 kg). Bland-
Altman analysis showed 95% limits of agreement from
− 4% to 3%.
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Reproducibility Frondas-Chauty et al. also evaluated
the reproducibility of Pea Pod in piglets (four measure-
ments within one hour) [44]. Reproducibility was limited
at low FM% (CV 14% to 32% at mean FM% of 3.7%) but
better at higher FM% (CV 4% to 10% at mean FM% of
11.7%).
In summary, these studies suggest that Pea Pod has

reasonable accuracy and reproducibility for FM% but re-
producibility may be poor with lean body composition.

Studies in full-term infants
The accuracy and reproducibility of Pea Pod was exam-
ined in full-term infants by three studies each. All stud-
ies included both male and female infants. The accuracy
studies included between 49 to 84 infants and the repro-
ducibility studies from 17 to 36. The chronological age
ranged from 0.4 to 24.6 weeks. The behavioural states
[16, 18] and ethnicity [18, 45] were considered in two
studies.

Accuracy Ma et al. [18] examined the accuracy of Pea
Pod measures of FM% against deuterium dilution in
full-term infants aged 0.4 to 24.4 weeks and weighing 2.
7 to 7.4 kg. Limits of agreement (95%) for FM% were
relatively wide (− 6.84% to 6.71%). The authors reported
that the results were not influenced by infant behav-
ioural state. Ellis et al. [45] evaluated Pea Pod against a
four-compartment model in full-term infants at 2 to
17 weeks of age. There was no bias for FM% but the
95% limits of agreement were also wide (− 6.8% to 8.1%).
In multiple regression analysis that included protein and
hydration fractions, the mineral fraction of FFM was the
only significant factor associated with differences in
FM% between Pea Pod and the four-compartment

reference model (R2 16%, P = 0.004). Fields et al. [49]
compared Pea Pod and DXA in 84 full-term infants at
6 months of age. There was bias for FM% of − 4% and
95% limits of agreement of − 8% to 0%. However, the
bias was positively related to FM%, suggesting underesti-
mation of FM% in infants with lower fat content.

Reproducibility The reproducibility (within and be-
tween days) of Pea Pod was examined in three studies
[16, 18, 45]. Yao et al. studied 17 full-term infants aged
between 1.4 to 21.7 weeks and reported that reproduci-
bility was not affected by the infants’ behavioural state,
body weight, urination, defecation, or FM% [16]. The
within and between day 95% limits of agreement for
FM% were − 2.0 to 1.2 and − 2.2 to 1.7, respectively.
Similarly, Ma et al. found that in infants aged between 0.
4 to 21.7 weeks, 95% limits of agreement for between
day differences in FM% were − 2.9% and 1.9%, and the
within subject CV for FM% was 4.9% [18]. Reproducibil-
ity was not influenced by infants’ behavioural state
(awake and active, N = 147; crying intensely, N = 74;
urination during the measurement, N = 33) or ethnicity
(Asians, N = 20; white, N = 16). Finally, Ellis et al. [45] re-
ported within day 95% limits of agreement for FM% of
− 2.3% to 3.1% in 31 infants at a mean age of 6 weeks.
In summary, Pea Pod has reasonable reproducibility

for FM% in full-term infants but only modest accuracy,
with overestimation or underestimation of FM% by 6%
to 8%. Although one DXA study suggested that Pea Pod
systematically underestimates FM%, this not seen when
referenced to other criterion measures. Studies included
very few infants in the first week of life, so accuracy and
reproducibility of Pea Pod in early neonatal period is un-
clear. Further, there are no data on the reproducibility

Fig. 1 Flow diagram of study selection process
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Table 1 Accuracy and reproducibility studies of Pea Pod in full-term and preterm infants
Reference Country Comparison

methods
Inclusion/
Exclusion

Number (sex) Number
of tests

Age at
measurement

Results

Animal and Animal Tissues

Accuracy studies

Sainz et
al. (2003)
[17]

The US ADP, chemical analysis
(CA), hydrostatic weighing

Bovine tissue with wide ranges of mass
(1.39–9.95 kg) and FM% (2.08–34.40%)

24 bovine
tissue
phantoms
(NA)

NR NA %Fat: ADP: 18.55%
CA: 18.59%
SD %fat ADP: 0.70%
CA: 0.73%
95% LoA: −1.22-1. 13 %Fat

Frondas-
Chauty et
al. (2012)
[44]

France ADP, chemical analysis Live piglets with wide ranges of mass
(1.03–8.49 kg) and FM% (3.2–16.4%)

34 live piglets NR 2, 7, and
21 days

%Fat: Pea Pod, 8.01 ± 4.03%;
CA, 8.7 ± 4.1%
Standard error of the
estimate: 1.7%
R2: 0.83

Reproducibility studies

Frondas-
Chauty et
al. (2012)
[44]

France ADP within a day Live piglets (aa above) 34 live piglets Four
times

2, 7, and
21 days

CV: ranging from 2.2 to
44.1%
Root mean square CV: 17.9%
CV values and median
differed by age and %fat
assessed using CA, with less
variability in piglets with
higher %fat

Full-Term Infants

Accuracy studies

Ma
et al.
(2004)
[18]

The US
& China

ADP, deuterium dilution Healthy f ull-term infants
(mixed ethnicity; white and Chinese)

53 (28F, 25 M) 2 days
and 2
tests on
first day

5.8 (6.0) (0.4–
24.4) wks

%fat Pea Pod: 20.32–6.87%;
deuterium: 20.39–6.68
95% LoA: − 6.84-6.71%
(not related to body mass)

Ellis
et al.
(2007)
[45]

The US ADP, 4-CM Full term healthy infants (mixed ethnic
groups; white, African American, Hispanic
American)

49 (24F, 25 M) Twice 8.0 (5.4) wks %Fat Pea Pod: 16.9 (6.5),
4-CM: 16.3 (7.2) (P = 0.62)
95% LoA: − 6.8-8.1%

Fields et
al. (2012)
[49]

The US Pea Pod, DXA Full term singleton infants, average for
gestational age and with gestational age >
=37, staying in hospital less than 3 days
after delivery. nfants with congenital
malformation were excluded. (ethnicity nor
reported)

84 (47F, 37 M) NR 6 mo; 168.4
(3.8) days

%Fat Pea Pod: 26.7 (4.7),
DXA: 31.3 (3.6), (P < 0.001)

Reproducibility studies

Yao
et al.
(2003)
[16]

The US ADP within and between-
days – data from multiple
compartment studies of
Butte et al. and Fomon et
al

Full term healthy infants with weight
ranging between 3.40–7.45 kg and age
ranging between 1.40–21.70 weeks
(ethnicity not reported)

17 (8F, 9 M) 2 days
and 2
tests per
only one
day

1.40–21.70
weeks (all 3
tests);

%fat: ranging 7.49–32.08%
SD %Fat within day: 0.52;
between day: 0.60
CV %fat within day: 2.85;
between day: 2.95
95% LoA within day:
− 2.0-1.2%; between day: −
2.2-1.7% (not a function of
behavioural state)

Ma
et al.
(2004)
[18]

The US
& China

ADP within and between
days

Healthy full-term infants (mixed ethnicity;
white and Chinese)

36 (16F, 20 M) 2 days
and 2
tests on
first day

7.6 (7.2) (0.4–
21.7) wks

SD %fat within day: 0.69%;
between day: 0.72%
CV %fat within day: 4.94;
between day: 5.10%
95% LoA within day:
− 2.7-3.1%; between
day: − 2.9-1.9 (not a function
of body f atness)

Ellis
et al.
(2007)
[45]

The US ADP within day Full term healthy infants (mixed ethnic
groups; white, African American, Hispanic
American)

31 (18F, 13 M) Twice 6.0 (3.3) wks SD %fat within: 0.7%
CV %fat within: 7.9%
95% LoA: − 2.3-3.1%

Pre-Term Infants

Accuracy studies

Roggero
et al.
(2012)

Italy Pea Pod, deuterium
dilution

Preterm singleton infants with gestational
age = < 36 weeks were included. Also term
infants with gestational age > =37 were

10 (4F, 6 M) NR < 1 month %fat Pea Pod: 5.67 (1.84),
deuterium dilution: 5.99
(2.56), P = 0.53
95% LoA: −3.4-2.76%
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and accuracy specifically in infants born small, large or
appropriate for gestational age.

Studies in pre-term infants

Accuracy Only two studies have specifically evaluated the
accuracy of Pea Pod in pre-term infants, both using iso-
tope dilution (Table 1) [50, 51]. Roggero et al. referenced
Pea Pod with a two-compartment model and included 10
pre-term infants (≤36 weeks) aged less than one month
with mean (SD) weight of 1.83 (0.21) kg [50]. The 95%
limits of agreement for FM% were − 3.4% to 2.8% with no
bias [50]. Forsum et al. [51] measured 14 pre-term infants
at 32 to 35 weeks of gestation in the first week with a
mean (SD) weight of 2.04 (0.33) kg. Compared to a three-
compartment model, the 95% limits of agreement were
relatively wide (− 6.8% to 4.8%) but there was no bias. This
study also showed that at higher FFM density, Pea Pod
underestimated FFM density.

Reproducibility Roggero et al. [50] performed two
consecutive Pea Pod measurements in 57 infants and
the 95% limits of agreement were − 2.05% and 2.36%.
They also compared measurements in 12 infants (3
preterm) using two Pea Pod devices in the same
room and the inter-device 95% limits of agreement
were − 1.87% and 2.71%.

In summary, there are few data on the validity of Pea
Pod in preterm infants, but performance appears to be
similar to full-term infants, that is, reasonable reproduci-
bility but only modest accuracy.

Practical challenges of pea pod
Despite the above concerns about accuracy, Pea Pod has
been considered a valuable tool with a broad clinical re-
search application. We identified 74 papers utilising Pea
Pod to answer research questions, including studies
comparing different clinical groups (pre-term vs. full-
term infants, small for gestational age vs. appropriate for
gestational age, different ethnicities, different feeding
methods and breast milk compositions, and different
health status or health indicators) [33, 52–69], assessing
growth charts, to cross-validate FM values obtained by
other techniques and anthropometric measures (e.g.
skinfold) [70–76], monitoring growth patterns [54, 77–
80], investigating the relationship between maternal and
prenatal factors and health outcomes during infancy
[81–86], and others [87]. The majority of these studies
(n = 43) included only full-term infants [33, 52–54, 56–
58, 60, 62, 66, 67, 69–72, 74, 75, 78, 80, 81, 83–86, 88–
106], 13 only pre-term infants [9, 68, 73, 77, 79, 107–
112], and 17 both full- and pre-term infants [55, 59, 61,
63–65, 76, 82, 87, 113–120]. Although, the use of Pea
Pod in both full-term and pre-term infants and in spe-
cific clinical risk and ethnic groups is feasible, it might

Table 1 Accuracy and reproducibility studies of Pea Pod in full-term and preterm infants (Continued)
Reference Country Comparison

methods
Inclusion/
Exclusion

Number (sex) Number
of tests

Age at
measurement

Results

[50] included. Infants aged > 1 mo of age, with
congenital diseases,
chromosomal abnormalities, respiratory
distress syndrome, or severe brain,
metabolic, cardiac, or gastrointestinal
diseases were excluded.

(not a function of mean
values)

Forsum
et al.
(2016)
[51]

Sweden Pea Pod, deuterium
dilution

Infants without sepsis or malformations
born between 32 and 37 gestational weeks
(ethnicity not reported)

14 (4F, 10 M) NR 3–7 days old %Fat Pea Pod: 4.2 (3.9),
deuterium dilution 3.2 (3.8)
(P > 0.05)
95% LoA: − 6.8-4.8%
FFM density by Pea Pod did
not correlate with those of
deuterium dilution (r2 = 0.04,
P > 0.05)
Hydration factor: 83%

Reproducibility studies

Roggero
et al.
(2012)
[50]

Italy NA Preterm singleton infants with gestational
age = < 36 weeks were included. Also term
infants with gestational age > =37 were
included. Infants aged > 1 mo of age, with
congenital diseases,
chromosomal abnormalities, respiratory
distress syndrome, or severe brain,
metabolic, cardiac, or gastrointestinal
diseases were excluded.

Precision:
57 (29F, 28 M)
Inter-devise
reproducibility:
9 full term
and 3 preterm
(6F, 6 M)

Twice < 1 month %Fat SD: 1.1
95% LoA: − 2.05-2.36%
Inter-device
reproducibility:
%fat test 1: 8.97%, test 2:
8.55%
95% LoA: − 1.87-2.71

NA, not applicable; ADP, air displacement plethysmography; CA, chemical analysis; SD, standard deviation; LoA, limits of agreement; wks, weeks; US, united states;
CV, coefficient of variation; 4-CM, 4 compartment model; DXA, dual energy X-ray absorptiometry
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be associated with some practical challenges. Herein, we
highlight and discuss potential challenges associated
with the use of Pea Pod.
Measuring body composition in Pea Pod involves the

simultaneous weighing and measuring of length and
body volume. Pea Pod assesses body composition con-
sidering an infant’s anthropometric and demographic
characteristics that are entered in to the Pea Pod system
by personnel. As weight changes dramatically during
early infancy, this information should be obtained con-
secutively with the Pea Pod test. Per the manufacturer
manual, it is advised to conduct the Pea Pod test in du-
plicate to potentiate the accuracy. Repeat measures in
infants might be associated with practical challenges and
might require a third test which increases both re-
searcher and caregiver burden. Out of 73 papers utilising
Pea Pod, 13 reported repeated measurements, six of
which reported duplicate tests [62, 67, 76, 85, 112, 114],
six reported a third test if the results of the first two dif-
fered significantly [81, 102, 105, 116, 117, 120], and one
reported three tests (performed on all subjects) [115],
and the remaining studies that did not duplicate did not
provide a rationale.
Furthermore, body moisture, temperature, and hair

have been shown to significantly influence FM%, and
underestimate it by 2% [121, 122]. Thus, Pea Pod testing
should always be conducted at a moisture free and nor-
mal body temperature prior to measurement and in a
resting state while wearing wig cap or smoothed hair
using baby oil. Reproducibility studies have not sug-
gested any effect of infant movement, crying, urination
and defecation on the body composition measurements
[18, 45], although the data are few.
The calibration process requires the placement of a

hollow cylinder with known mass and volume into the
Pea Pod. Mass and volume calibration should also be ad-
justed for any objects attached to the infants, which is
mainly true for those remaining in hospital. Objects such
as name bracelets and cord clamps affect body mass and
volume readings and consequently FM and FFM. Some
but not all studies reported adjusting for these objects
[53, 58, 72, 76, 80, 89, 90, 98, 108]. Ramel et al. [108]
also adjusted for other objects such as nasogastric tube
and oximetry monitor.
Assessment of body composition by Pea Pod is not

suitable for all infants. For example, Pea Pod is limited
to infants weighing from 1 kg to 10 kg and with body
volume > 1.85 L [14]. Infants who require oxygen, intra-
venous fluids and who are unstable also cannot easily
undergo Pea Pod measurement. The inclusion/exclusion
criteria of a large number of papers are based on these
characteristics such as weight [9, 43, 55, 65, 71, 73, 78,
79, 88, 93, 108–111, 113, 114] and health condition [9,
33, 54, 61, 76, 77, 98, 100, 112, 123]).

Pea Pod accommodates infants weighing up to 10 kg
(approximately six months of age), but the child and
adult version of ADP (Bod Pod) only houses children
aged ≥2 years. Unfortunately, use of ADP for the meas-
urement of body composition in children aged 6 to
24 months has been shown to be inaccurate [124]. This
leaves a large gap, from 6 months to 2 years, where body
composition cannot be determined using ADP method.
This is an important consideration for longitudinal re-
search projects and may limit the applicability of ADP.
When infants with very low body fat content are mea-

sured in Pea Pod, the system may give errors and even a
negative body fat content that is not physiologically
plausible. Low body fat or negative body fat errors were
reported in three studies [43, 80, 88], two of which were
from Ethiopia [42, 76], in which 30 and 14 infants had
to be excluded, respectively, and one from Australia
[80], in which one infant was excluded. Similarly, spuri-
ously high body fat content has also been reported in
two studies [76, 80]. Carrberry et al. [80] reported ex-
cluding one infant – whose father was of Tongan ethni-
city – due to a very high FM%, and Villar et al. [76]
excluded three infants due to high FM% or FFM% (> 3
SD). These findings highlight the importance of consid-
ering measurement errors in preliminary sample size
calculation by study investigators, particularly if a multi-
ethnic population is under the investigation.
ADP devices operate under changing air temperature;

for example, as an individual enters the test chamber the
air temperature in the test chamber increases, resulting in
different compressibility (adiabatic). However, the air in
the thoracic cavity and near the surface of skin is isother-
mic and thus is more easily compressed (40%) than an
equivalent volume of adiabatic air [125], which can affect
FM readings. In adult ADP devices, thoracic gas volume is
measured directly, but this is impractical in infants and
young children. Thus, the thoracic gas volume is predicted
based on infant weight, length and age. The prediction
equation has been validated in full-term infants [126, 127],
but its accuracy in pre-term infants and those with lung
disease is unknown. Accordingly, Pea Pod measurements
in infants with lung disease should be interpreted with
caution because of altered thoracic gas volume.
To account for the skin surface artefact, the system

software applies a correction factor based on body sur-
face area. Body surface estimates are less accurate at the
extremes of body size [128]. This might have implica-
tions for studies involving pre-term and growth re-
stricted infants, and those born large for gestational age,
such as with maternal diabetes.
The Pea Pod system calculates FM from body weight,

volume and the density of FM and FFM. It is well docu-
mented that the density of fat mass is constant at 0.
9007 g/ml, though the density of FFM varies with age
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and physiological state. The FFM density estimates use in
Pea Pod are derived from full-term infants [129]. Fomon
et al. based their model on the measurements of protein,
minerals and water in FFM [129], and Butte et al. on the
measurements of body weight, body protein, bone min-
erals, and body water [130]. An important difference be-
tween these two models is the estimated amount of water
(hydration factor) in FFM, which is lower in the Fomon
model, specifically in the neonatal period (80.6% for both
boys and girls at birth; 82.7% for boys and 83.1% for girls
at two weeks, respectively) [129, 130]. Thus the Fomon
model may produce FM values that are greater than those
obtained using the Butte model. For example, Eriksson
[91] reported a greater increase in FM% between one and
12 weeks of age when using the Butte model than the
Fomon model. Consideration of the FFM model is import-
ant in longitudinal research i and when comparing results
from different studies.
The hydration factor of FFM changes considerably

during early infancy (particularly in pre-term infants)
and can affect estimates of FFM and FM [131]. The Pea
Pod system has algorithms to account the fluctuation in
hydration in this period of life [51]. However, Forsum et
al. [51] found that when compared to a three compart-
ment model using isotope dilution, Pea Pod gave biased
values for predicted FFM density in moderately pre-term
infants (lower by 0.0019 ± 0.0058 g/ml). Biological vari-
ability in hydration factors may lead to variations in
FFM density and consequently inaccurate body compos-
ition readings.

Conclusion and future lines of research
Pea Pod is a convenient a way to measure body compos-
ition in infants and may be useful for monitoring groups
of infants but appears to have only modest accuracy in in-
dividual subjects. Multiple factors may affect accuracy, in-
cluding body moisture and temperature, objects attached
to infants, extremes of body size, thoracic gas prediction
equations, FFM density, and fluctuations in FFM hydra-
tion factor. There are few data on the accuracy of Pea Pod
in preterm infants and a reference body composition for
pre-term infants is lacking. Further, the validity of Pea Pod
in different clinical risk groups and ethnicities is unknown.
Given these gaps in the current literature, the following
are suggested as future lines of research:

1) Further validate pea pod in infants against the gold
standard four compartment model, especially in
pre-term infants and in more diverse populations.

2) Investigate the accuracy/reproducibility of Pea Pod
in different birth weight for gestational age
categories.

3) Investigate the impact of FFM hydration level and
density in Pea Pod measurements.

4) Develop and validate specific prediction equations
to estimate thoracic cavity gas in pre-term infants
and more diverse infant populations.

5) Investigate the impact of body movement,
urination, defecation, and lung disease on Pea Pod
measurements.

6) Develop and design equipment working on the
ADP principles that could accommodate children
aged 6–24 months to support longitudinal research.

7) Develop a set of recommendations for complete
and transparent reporting of study procedures
when using Pea Pod.

8) Investigate the best body composition measure(s)
that accurately predicts growth, nutritional status,
obesity and health outcomes.

9) Establish body composition reference data or curves
for both full-term and pre-term infants, such as
FM/FFM for length z-scores.
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