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Abstract

Background: Mounting evidence suggests both vitamin D and the early life gut microbiome influence childhood
health outcomes. However, little is known about how these two important exposures are related. We aimed to
examine associations between plasma 25-hydroxyvitamin D (25[OH]D) levels during pregnancy or at delivery (cord
blood) and infant gut microbiota.

Methods: Maternal and cord blood 25[OH]D levels were assessed in a sample of pregnant women. Compositional
analyses adjusted for race were run on the gut microbiota of their offspring at 1 and 6months of age.

Results: Mean prenatal 25(OH)D level was 25.04 ± 11.62 ng/mL and mean cord blood 25(OH)D level was 10.88 ±
6.77 ng/mL. Increasing prenatal 25(OH)D level was significantly associated with decreased richness (p = 0.028) and
diversity (p = 0.012) of the gut microbiota at 1 month of age. Both prenatal and cord 25(OH)D were significantly
associated with 1 month microbiota composition. A total of 6 operational taxonomic units (OTUs) were significantly
associated with prenatal 25(OH)D level (four positively and two negatively) while 11 OTUs were significantly
associated with cord 25(OH)D (10 positively and one negatively). Of these, OTU 93 (Acinetobacter) and OTU 210
(Corynebacterium), were consistently positively associated with maternal and cord 25(OH)D; OTU 64 (Ruminococcus
gnavus) was positively associated with prenatal 25(OH)D but negatively associated with cord 25(OH)D.

Conclusions: Prenatal maternal and cord blood 25(OH)D levels are associated with the early life gut microbiota. Future
studies are needed to understand how vitamin D and the microbiome may interact to influence child health.
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Background
Vitamin D is necessary for optimal maternal and fetal
health during pregnancy [1], however, vitamin D defi-
ciency and inadequacy is common during this time [2]. In
addition to potential bone problems in offspring, maternal

vitamin D level may impact child health outcomes, includ-
ing risk for allergy/asthma and obesity [3–5]. Growing evi-
dence suggests these child health outcomes may also be
associated with the gut microbiome [6].
Vitamin D level may impact the structure and function

of the gut microbiome. In vitamin D receptor knockout
mice, there are significant community level and func-
tional changes in the gut microbiota compared to wild
type mice [7, 8]. Mice that cannot produce 1,25-dihy-
droxycholecalciferol exhibit gut microbiome dysbioisis
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[8]. There is sufficient evidence in humans that vitamin
D level is associated with gut microbiome composition
[9]. Maternal dietary vitamin D intake is also associated
with maternal gut microbiome measured 4 days after de-
livery [10]. Only a few studies have examined potential
associations between maternal vitamin D level and gut
microbiome in early life. In the KOALA birth cohort,
maternal vitamin D supplementation and maternal 25-
hydroxyvitamin D (25[OH]D) quintiles were negatively
associated with counts of Bifidobacterium species and
there was a positive association between maternal
25(OH)D quintiles and B. fragilis counts in 1 month old
infant gut microbiota [11]. Cord blood 25(OH)D was as-
sociated with higher levels of Lachnobacterium and
lower levels of Lactococcus in the Vitamin D Antenatal
Asthma Reduction Trial [12]. These findings suggest
maternal vitamin D levels might influence the abun-
dance of several key bacterial taxa within the infant
microbiota.
The infant gut microbiome is initially seeded by the

maternal microbiome [13]; through an influence on the
maternal microbiome, prenatal vitamin D level may po-
tentially influence the infant gut microbiome. Additional
study of the role of prenatal vitamin D in infant micro-
biome development is needed [12]. We examined if
25(OH)D levels during pregnancy (measured between 25
and 44 weeks gestation; mean = 33 weeks) or at delivery
(in cord blood) were associated with the infant gut
microbiota at infant ages ~ 1month and ~ 6months in a
sample of maternal-child pairs from the racially and so-
cioeconomically diverse Wayne County Health, Environ-
ment, Allergy and Asthma Longitudinal Study (WHEA
LS) birth cohort [3, 14].

Methods
Study population
WHEALS recruited pregnant women with due dates
from September 2003 through December 2007, and who
were seeing an obstetric practitioner at 1 of 5 clinics of
an urban health system to establish a birth cohort [3,
14]. All women were in their second trimester or later,
were aged 21–49 years, and were living in a predefined
geographic area in Wayne and Oakland counties that in-
cluded the city of Detroit as well as the suburban areas
immediately surrounding the city. All participants pro-
vided written, informed consent and study protocols
were approved by the Institutional Review Board at
Henry Ford Health System. The original WHEALS co-
hort recruited 1258 mother-child pairs.

Stool specimens
Home visits with participants were conducted targeting
infant ages 1 and 6months. Families were asked to re-
tain the most recent soiled diaper prior to the home visit

and stool samples were banked at − 80 °C. Detailed in-
formation on DNA extraction methods are presented
elsewhere [15].

Polymerase chain reaction conditions and library
preparation for sequencing
The V4 region of the 16S rRNA gene was amplified, as
described by Caporaso, Lauber [16]. Briefly, 16S rRNA
amplification was performed in 25-μL reactions using
0.025 U Takara Hot Start ExTaq (Takara Mirus Bio Inc.,
Madison, WI), 1X Takara buffer with MgCl2, 0.4 pmol/
μL of F515 and R806 primers, 0.56 mg/mL of bovine
serum albumin (Roche Applied Science, Indianapolis,
IN), 200 μM of dNTPs and 10 ng of genomic DNA. Re-
actions were performed in triplicate with the following:
initial denaturation (98 °C, 2 min), 30 cycles of 98 °C (20
s), annealing at 50 °C (30 s), extension at 72 °C (45 s),
and final extension at 72 °C (10 min). Amplicons were
verified using a 2% Tris/Borate/EDTA agarose e-gel (Life
Technologies, Grand Island, NY), cleaned and normal-
ized using SequalPrep Normalization Plates (Applied
Biosystems, Foster City, CA), and further quantified
using the Qubit 2.0 Fluorometer and the double-
stranded DNA HS Assay Kit (Life Technologies). Sam-
ples were pooled in equal moles at concentrations of 5
ng, purified using AMPure SPRI beads (Beckman
Coulter, Brea, CA), denatured and diluted to 2 nM, and
5 pM was loaded onto the Illumina Nextseq cartridge
with 40% (v/v) of denatured 12.5 pM PhiX spike-in
control.

Sequence data processing and quality control
Paired-end sequences were assembled using FLASH v
1.2.7 [17], de-multiplexed by barcode, and low quality
reads (Q-score < 30) were discarded in QIIME 1.8 [18].
Reads were truncated if 3 consecutive bases were < Q30,
and were retained only if the truncated sequence was
≥75% of the original length. UCHIME [19] was used to
check for chimeras, which were filtered from the dataset
prior to operational taxonomic unit (OTU) picking at
97% sequence identification using UCLUST [20] against
the GreenGenes database version 13_5 [21]; sequence
reads that failed to cluster with a reference sequence
were clustered de novo. Sequences were aligned using
PyNAST [22], and taxonomy assigned using the RDP
classifier [23] and GreenGenes reference database ver-
sion 13_5 [21]. FastTree 2.1.3 [24] was used to build a
phylogenetic tree. To normalize variation in read depth
across samples, data was rarefied to the minimum read
depth of 60,000 sequences per sample. To ensure that a
representative subsample was selected, a representative
rarefying algorithm described previously was imple-
mented [25].
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A total of 580 children had at least 1 stool sample in
the final rarefied OTU table; of these, 499 unique chil-
dren (700 total stool specimens) had a maternal or cord
blood 25(OH)D measurement and are included in the
statistical analysis. Table 1 presents the breakdown of
those with each measure (microbiota, 25[OH]D) by each
time point (1 and 6months or prenatal and cord, re-
spectively). In the analytical dataset, stool specimens
from the 1 month visit were collected at a mean ± stand-
ard deviation (SD) of 40 ± 17 days (minimum = 16, max-
imum = 137) and stool specimens from the 6 month visit
were collected at a mean ± SD of 207 ± 31 days (mini-
mum = 168, maximum = 322). Throughout, “1 month”
and “6month” are used as labels of the intended time
period of sample collection.

Vitamin D measurement
25(OH)D was measured in frozen (− 80 °C) plasma sam-
ples from pregnancy (range = 25–44 weeks gestation;
mean = 33 weeks) and delivery (cord blood) in the la-
boratory of Dr. Neil Binkley at the University of Wiscon-
sin using a high-performance liquid chromatography
method [3, 14, 26]. For those with 25(OH)D levels below
the lowest detectable limit of 5 ng/mL, a value of 2.5 ng/
mL was assigned (N = 11 for prenatal and N = 81 for
cord 25[OH]D). There is no overall consensus on opti-
mal vitamin D levels in pregnancy; however, levels above
20 ng/mL prevent bone-related pathologies [2]. There-
fore, insufficient levels of vitamin D were defined as <
20 ng/mL [2].
To account for seasonal variation in vitamin D, as de-

scribed by Wegienka, Havstad [3], we fit a sinusoidal
model of the values (25[OH]D value) and time (month,
denoted as “m”) of collection:

25 OHð ÞD level ¼ β0 þ β1 sin 2πm=12ð Þ
þ β2 cos 2πm=12ð Þ:

Deseasonalized values [27] were calculated by taking
each subject’s measured value, subtracting the predicted
value and adding back the overall mean. Deseasonalized
values were used for analysis.

Statistical analysis
Significance for main effects was pre-specified at p < 0.05
and for interaction effects at p < 0.1. Compositional dif-
ferences in the gut microbiota by maternal and cord
blood 25(OH)D measures were assessed by permuta-
tional multivariate analysis of variance as implemented
in the R package “vegan” [28], using both weighted and
unweighted UniFrac [29]. Alpha diversity indices (rich-
ness, Pielou’s evenness, and Faith’s phylogenetic diver-
sity) were calculated using QIIME [18] and the R vegan
package [28], and tested for associations with maternal
and cord blood 25(OH)D using linear regression. Indi-
vidual taxa tests were conducted on all OTUs found in
10% or more of samples using zero-inflated negative bi-
nomial regression (or the standard negative binomial if
convergence failed). P-values were corrected using the
Benjamini and Hochberg [30] false discovery rate; false
discovery rate adjusted p < 0.05 was considered signifi-
cant. We a priori hypothesized that race may confound
and/or modify associations between maternal and cord
blood 25(OH)D and infant gut microbiota, thus all ana-
lyses were adjusted for maternal race (Black versus
White, excluding others) and we also tested for race-
specific effects with stratified models and interaction
terms.
Finally, as breastfeeding is associated with early-life

gut microbiota [15] and with lower levels of vitamin D
in infancy [31], we hypothesized that breastfeeding could
modify associations of maternal and cord blood
25(OH)D with gut microbiota. For each microbiota
time-point (1 or 6 months), current breastfeeding was
defined as any current breastfeeding at that timepoint.
Interaction terms were fit between maternal or cord
25(OH)D and current breastfeeding to examine potential
effect modification.

Results
Basic descriptives
Table 2 presents demographic information comparing
characteristics of those included in the analytic sample
to those not included. Compared to those not included
in the sample, those included were slightly older, and
were more often White, married, non-urban dwelling,
had higher incomes and were less likely to be exposed to
environmental tobacco smoke prenatally (all p < 0.05).
Mean birth weight Z-score of children in the analytic
sample was also higher.
Mean prenatal 25(OH)D was 25.04 ± 11.62 ng/mL, while

mean cord blood 25(OH)D was 10.88 ± 6.77 ng/mL.
Among the 403 mothers with prenatal 25(OH)D measure-
ments, 141 (35%) had insufficient prenatal vitamin D
(25[OH]D < 20 ng/mL). Prenatal and cord 25(OH)D were
highly correlated (Pearson ρ = 0.81, p < 0.001).

Table 1 Number of mother-child pairs by vitamin D and fecal
data time points (data as N [%])

Fecal collection time points

Vitamin D sample 1month 6months Both

Prenatal 53 (31.2%) 44 (34.4%) 61 (30.4%)

Cord 31 (18.2%) 29 (22.6%) 36 (17.9%)

Both 86 (50.6%) 55 (43.0%) 104 (51.7%)
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Association of prenatal and cord blood 25(OH)D with gut
microbiota alpha diversity
After adjusting for race, higher prenatal 25(OH)D level
was significantly associated with decreased richness (p =
0.028) and diversity (p = 0.012) of the gut microbiota at 1
month of age. There were no other main effects of pre-
natal or cord 25(OH)D levels on the infant gut microbiota
at 1 or 6months of age after adjusting for race (Table 3).

There was evidence that race modified associations be-
tween cord blood 25(OH)D and alpha diversity metrics
of the infant gut microbiota at 1 and 6months (Table 3).
There was evidence for a race-specific effect between
cord 25(OH)D level and microbial evenness at 1-month
(interaction p = 0.016), where higher cord 25(OH)D level
was associated with higher infant gut evenness, but only
among White women (p = 0.044). Although there was
evidence of a race-specific effect of cord 25(OH)D on
richness at 1 month (interaction p = 0.079) with higher
cord 25(OH)D inversely associated with richness only in
Blacks; in models stratified by race this effect was not
statistically significant. Race also modified the associ-
ation of cord 25(OH)D with infant gut evenness at the 6
month visit (interaction p = 0.053); in Black women,
higher cord 25(OH)D was associated with decreased in-
fant gut evenness (p = 0.025) but there was no associ-
ation in White children (p = 0.475).
There was no evidence current breastfeeding modified

associations of maternal or cord 25(OH)D and 1- or 6-
month infant gut microbiota alpha diversity metrics (all
interaction p > 0.42).

Association of prenatal and cord blood vitamin D with
gut microbiota composition
After adjusting for race, both prenatal (p = 0.029 for un-
weighted UniFrac, p = 0.030 for weighted UniFrac) and
cord 25(OH)D (p = 0.028 for unweighted UniFrac, p =
0.044 for weighted UniFrac) levels were significantly as-
sociated with 1-month microbiota composition, though
only a small proportion of variability in microbiota com-
position was explained by maternal or cord vitamin D
(Table 4). No significant associations were found be-
tween prenatal and cord 25(OH)D levels and microbiota
composition at 6 months of age, after adjusting for race
(Table 4). There was evidence of a race-specific effect of
prenatal 25(OH)D on 1-month infant gut microbiota
composition (interaction p = 0.089), with associations in
Black (p = 0.006 for weighted UniFrac) but not White
women (p = 0.375 for weighted UniFrac). There was no
evidence that current breastfeeding modified associa-
tions of maternal or cord 25(OH)D and 1- or 6-month
infant gut microbiota composition (all interaction p >
0.40).
Based on compositional difference testing, individual

OTU tests were conducted to associate deseasonalized
prenatal and cord 25(OH)D level with 1-month infant
gut OTUs only, after adjusting for maternal race (Fig. 1).
In the 1-month samples, a total of 6 OTUs were signifi-
cantly associated with prenatal 25(OH)D levels while 11
OTUs were significantly associated with cord 25(OH)D.
The majority of significant OTUs were positively associ-
ated with prenatal and cord 25(OH)D levels (4/6 for pre-
natal vitamin D; 10/11 for cord vitamin D). Three OTUs

Table 2 Characteristics of participants included and excluded
from analysis (data as mean ± SD or N (%))

Included in analysis subset

Covariate No (N = 759) Yes (N = 499) p-value*

Maternal age (years) 29.2 ± 5.2 30.1 ± 5.2 0.002

Maternal race

White 150 (19.8%) 140 (28.1%) 0.001

Black 497 (65.5%) 281 (56.3%)

Other 112 (14.8%) 78 (15.6%)

Mother married

No 318 (41.9%) 167 (33.5%) 0.003

Yes 441 (58.1%) 332 (66.5%)

Urban residence

No 299 (39.4%) 256 (51.3%) <.001

Yes 460 (60.6%) 243 (48.7%)

Household income

< $40,000 328 (43.2%) 149 (29.9%) <.001

$40,000–$80,000 210 (27.7%) 137 (27.5%)

$80,000+ 139 (18.3%) 144 (28.9%)

Refused/did not answer 82 (10.8%) 69 (13.8%)

Gestational agea 38.7 ± 1.8 38.8 ± 1.6 0.27

Birthweight z-scoreb −0.196 ± 0.972 − 0.005 ± 1.004 0.001

First born child

No 492 (64.8%) 306 (61.3%) 0.21

Yes 267 (35.2%) 193 (38.7%)

Mode of delivery

Vaginal 456 (60.6%) 328 (65.9%) 0.061

C-Section 296 (39.4%) 170 (34.1%)

Season of birth

Winter 156 (20.6%) 101 (20.2%) 0.53

Spring 182 (23.9%) 103 (20.6%)

Summer 202 (26.6%) 143 (28.7%)

Fall 219 (28.9%) 152 (30.5%)

Environmental tobacco smoke at pre-delivery

No 517 (68.1%) 394 (79%) <.001

Yes 242 (31.9%) 105 (21%)
*Calculated by analysis of variance for numerical covariates and chi-square test
for categorical covariates
aN = 737 for No and N = 495 for Yes
bN = 700 for No and N = 472 for Yes
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Table 3 Alpha diversity metrics by deseasonalized maternal Vitamin D, overall and by race

Outcome Model βa SE p-value

1-Month

Prenatal Vitamin D

Richness Overall (unadjusted) −4.872 1.201 <.001

Overall (adjusted for race)b −3.293 1.488 0.028

Black −4.409 1.912 0.022

White −1.548 2.371 0.515

Interaction p-value 0.35

Evenness Overall (unadjusted) −0.004 0.002 0.046

Overall (adjusted for race)b − 0.002 0.003 0.498

Black −0.004 0.003 0.26

White 0.001 0.004 0.76

Interaction p-value 0.347

Diversity Overall (unadjusted) −0.293 0.063 <.001

Overall (adjusted for race)b −0.199 0.079 0.012

Black −0.281 0.101 0.006

White −0.071 0.125 0.567

Interaction p-value 0.195

Cord Vitamin D

Richness Overall (unadjusted) −6.363 2.306 0.006

Overall (adjusted for race)b −2.001 2.660 0.453

Black −5.955 3.455 0.087

White 3.516 4.126 0.397

Interaction p-value 0.079

Evenness Overall (unadjusted) −0.005 0.004 0.219

Overall (adjusted for race)b 0.002 0.005 0.712

Black −0.009 0.007 0.194

White 0.017 0.008 0.044

Interaction p-value 0.016

Diversity Overall (unadjusted) −0.385 0.122 0.002

Overall (adjusted for race)b −0.174 0.142 0.223

Black −0.370 0.191 0.055

White 0.100 0.206 0.629

Interaction p-value 0.103

6-Months

Prenatal Vitamin D

Richness Overall (unadjusted) −4.447 1.513 0.004

Overall (adjusted for race)b −2.324 1.852 0.211

Black −2.364 2.590 0.363

White −2.276 2.626 0.388

Interaction p-value 0.981

Evenness Overall (unadjusted) −0.004 0.002 0.097

Overall (adjusted for race)b −0.001 0.003 0.643

Black 0.000 0.004 0.973

White −0.003 0.005 0.553
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Table 3 Alpha diversity metrics by deseasonalized maternal Vitamin D, overall and by race (Continued)

Outcome Model βa SE p-value

Interaction p-value 0.648

Diversity Overall (unadjusted) −0.229 0.075 0.003

Overall (adjusted for race)b −0.116 0.091 0.206

Black −0.167 0.128 0.195

White −0.055 0.128 0.667

Interaction p-value 0.544

Cord Vitamin D

Richness Overall (unadjusted) −8.437 2.860 0.004

Overall (adjusted for race)b −6.181 3.300 0.063

Black −10.201 4.241 0.018

White 0.673 5.153 0.897

Interaction p-value 0.112

Evenness Overall (unadjusted) −0.007 0.005 0.166

Overall (adjusted for race)b −0.008 0.006 0.177

Black −0.017 0.007 0.025

White 0.007 0.010 0.475

Interaction p-value 0.053

Diversity Overall (unadjusted) −0.409 0.140 0.004

Overall (adjusted for race)b −0.300 0.159 0.061

Black −0.479 0.205 0.021

White 0.006 0.248 0.979

Interaction p-value 0.141

SE standard error
aEstimated change in alpha diversity measure for a 5 ng/mL increase in vitamin D
bRestricted to Black or White only, so reduced sample size compared to unadjusted

Table 4 Compositional differences by deseasonalized maternal vitamin D, overall and by race

1-Month 6-Month

Unweighted UniFrac Weighted UniFrac Unweighted UniFrac Weighted UniFrac

p-value R2 p-value R2 p-value R2 p-value R2

Prenatal Vitamin D

Overall (unadjusted) < 0.001 0.013 0.042 0.008 0.001 0.009 0.490 0.003

Overall (adjusted for race)a 0.029 0.006 0.030 0.011 0.212 0.005 0.719 0.002

Black 0.001 0.014 0.006 0.023 0.037 0.011 0.973 0.001

White 0.903 0.008 0.375 0.012 0.609 0.01 0.614 0.008

Interaction p-value 0.157 0.089 0.144 0.871

Cord Vitamin D

Overall (unadjusted) 0.001 0.009 0.097 0.007 0.001 0.01 0.690 0.003

Overall (adjusted for race)a 0.028 0.007 0.044 0.011 0.234 0.006 0.938 0.001

Black 0.006 0.014 0.053 0.016 0.032 0.013 0.697 0.005

White 0.782 0.011 0.442 0.013 0.956 0.010 0.805 0.007

Interaction p-value 0.292 0.516 0.350 0.527
aRestricted to Black or White only, so reduced sample size compared to unadjusted
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were significantly associated with both prenatal and cord
25(OH)D: OTU 93 (Acinetobacter) and OTU 210 (Cor-
ynebacterium), which were consistently positively associ-
ated with both prenatal and cord 25(OH)D, as well as
OTU 64 (Ruminococcus gnavus), which was positively
associated with prenatal 25(OH)D, but negatively associ-
ated with cord 25(OH)D.

Discussion
In this racially diverse unselected birth cohort, we found
evidence that prenatal and cord blood vitamin D levels
were associated with early life (~ 1 month) gut micro-
biota. Conversely, there was no association of prenatal
or cord blood vitamin D and gut microbiota measured
at 6 months of age. This work extends that of previous
studies of maternal vitamin D and the infant gut micro-
biome [11, 12] and provides new data on the associa-
tions of cord blood vitamin D level and the infant gut
microbiome.
While some associations were unique, there were 3

OTUs in the 1 month gut microbiota significantly associ-
ated with both prenatal and cord blood 25(OH)D. Pre-
natal and cord blood 25(OH)D were both positively
associated with Acinetobacter and Corynebacterium
OTUs; in contrast, a Ruminococcus gnavus OTU was

positively associated with prenatal 25(OH)D but nega-
tively associated with cord blood 25(OH)D. Similar to
our findings, Lundgren, Madan [32] found that Acineto-
bacter in stool samples (collected at 6 weeks) of new-
borns delivered via C-section was positively associated
with maternal dairy intake, presuming increased mater-
nal dairy intake is associated with higher vitamin D. Ooi,
Li [8] found that defective vitamin D receptors in mice
were associated with lower Ruminococcaceae, which is
consistent with our findings with prenatal but not cord
blood 25(OH)D.
Only 2 other studies have compared prenatal vitamin

D level with infant gut microbiome. The KOALA Dutch
cohort study composed of 913 mother-infant pairs
assessed the association between prenatal 25(OH)D
levels with the abundance of predefined bacterial taxa
(Bifidobacteria, Escherichia coli, Bacteroides fragilis,
Clostridium difficile, and Lactobacilli) in stool samples
of children at 1 month of age [11]. Maternal 25(OH)D
quintiles were negatively associated with counts of Bifi-
dobacterium species but positively associated with
counts of B. fragilis [11]. Similarly, prenatal 25(OH)D
levels in WHEALS were inversely associated with Bifido-
bacterium species at 1 month. In contrast to our study,
which utilized 16S rRNA V4 sequencing and did not a

Fig. 1 Association between deseasonalized vitamin D (prenatal and cord) and 1-month specific OTUs, after adjusting for maternal race. Plot
displays all significant taxa (false discovery rate adjusted p < 0.05). OTUs significantly associated with both prenatal and cord vitamin D are
indicated by an asterisk (*). The y-axis displays the specific OTU and the x-axis is the negative binomial regression coefficient. OTUs are colored by
direction of association (blue (right side) = positive association, red (left side) = negative association). Abbreviations: OTU, operational
taxonomic units
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priori target specific bacterial taxa, in the KOALA co-
hort only specific bacterial groups were measured, thus
relationships between 25(OH)D and other gut bacteria
not measured in that study may have been missed. In a
study population of 333 ethnically diverse mother-infant
pairs that were part of a larger clinical trial, cord
25(OH)D levels were associated with increased levels of
Lachnospiraceae and unclassified Clostridiales but de-
creased levels of Lactococcus [12]. In contrast to the un-
selected WHEALS cohort, this population was
composed of children at higher risk for asthma.
Mechanistically, vitamin D could potentially impact

gut microbiome structure and function via several mech-
anisms. Vitamin D receptor knockout status influences
homeostasis in the intestines and gut microbiome of
mice [7]. The active form of vitamin D (1,25-dihydroxy-
cholecalciferol) and vitamin D receptor knockouts can
affect the gut microbiome indirectly by reducing inflam-
mation; gut inflammation provides pathogens with sub-
strates that allow them to proliferate at the expense of
more beneficial bacterial species [8]. Vitamin D may also
impact the gut microbiome by upregulating innate im-
munity, producing antimicrobial peptides by macro-
phages, maintaining the function of the intestinal barrier
and by altering calcium and phosphate absorption [33].
Additional research on potential mechanisms by which
vitamin D influences the gut microbiome are needed.
In the current study, there were some inconsistent

findings across the different time points of measure-
ment. During pregnancy, the fetus’s only source of
vitamin D is via the mother. However, after birth, the
child transitions to obtaining vitamin D from direct
sun exposure, dietary supplements and food (breast-
feeding or formula feeding). Around the time of
WHEALS births, in 2003, the American Academy of
Pediatrics recommendations were that all breastfed in-
fants, or non-breastfed infants who received less than
500 mL of vitamin D-fortified formula or milk, be
given 400 IU of vitamin D per day [34]. We do not
have information on whether or not the WHEALS
children were supplemented with vitamin D in early
life, thus we are unable to account for this potential
postnatal factor. In WHEALS, although the associ-
ation between prenatal and cord blood 25(OH)D is
strong (r = 0.75), when maternal 25(OH)D is below a
certain threshold (< 15 ng/mL), the correlation is
weaker (r = 0.16) [14]. These findings suggest there
exists a maternal vitamin D threshold below which
mothers may insufficiently contribute to cord blood
25(OH)D and could partially explain why prenatal
and cord 25(OH)D did not identically impact the in-
fant gut microbiota.
We found evidence for race-specific effects of

25(OH)D on the infant microbiota. Studies have shown

vitamin D levels vary among race groups, and this ex-
tends to the neonate [35]. Further, the correlation of
prenatal and cord blood 25(OH)D is weaker among
Black than White children (r = 0.65 and r = 0.87 respect-
ively) [36]. Lower 25(OH)D levels among Blacks as com-
pared to Whites can be explained by several factors.
Darker skin pigmentation and thickness reduces levels
of vitamin D production in the skin, a major source of
vitamin D in the body [37, 38]. In general, Blacks con-
sume less dietary vitamin D and milk products com-
pared to Whites [37]. These racial differences can also
be explained by genetic factors. Blacks have lower levels
of vitamin D-binding protein, a serum transport protein,
which contributes to lower levels of vitamin D [38]. Fu-
ture studies are needed to better understand mecha-
nisms, including genetic, dietary and/or cultural factors,
that may explain why race modifies the association of
25(OH)D and the infant gut microbiota.
Given that we found associations between maternal

and cord blood vitamin D and the infant gut microbiota
at 1, but not 6, months of age, it is possible that mater-
nal vitamin D level influences long-term offspring health
through mechanisms other than the gut microbiome.
Besides the microbiome, alternative mechanisms
through which maternal vitamin D may influence child
health includes suppression of inflammation [39] or epi-
genetic alternation [40].
In addition to future studies of these mechanisms, fu-

ture studies should also consider obtaining meconium as
a biospecimen for measuring the gut microbiome for
additional studies on the impact of maternal vitamin D
level and infant gut microbiome more proximal to the
time of seeding.
Our study has a number of strengths and limita-

tions. Our sample has considerable racial, educational
and socioeconomic diversity and the early timeframe
at which stool samples were collected (1 and 6
months), which allows for examination of the infant
gut microbiome early on, presumably before external
environmental exposure (i.e., diet diversity) has major
impacts on composition. However, stool samples were
only collected at 2 time points; given the rapidity of
the development of the gut microbiome after birth,
future studies should collect more samples over the
first year of life. We do not have data on the infants’
vitamin D levels after birth nor do we have data on
infants’ use of supplements after birth. However, because
the vitamin D levels were measured prenatally and in cord
blood, before the time of stool sample collection for gut
microbiota measurement, it is unlikely that our results are
due to reverse causality. There were significant differences
between the participants that were included and excluded
from the analytical sample, thus our results may be subject
to selection bias.
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Conclusion
Prenatal maternal blood and cord blood 25(OH)D levels
are associated with the very early life gut microbiota.
Maternal vitamin D levels during pregnancy are associ-
ated with health in childhood, including obesity [4], al-
lergy, and asthma [3]. Similar to vitamin D, the gut
microbiome influences human health and disease and
has also been shown to be associated with obesity [41],
allergy, and asthma [25]. Future studies should examine
if the gut microbiome mediates associations between
vitamin D and disease or if the gut microbiome and vita-
min D may interact to influence health and disease.
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