This study highlights the variability of facility readiness for care of “small and sick babies” in referral hospitals in LMIC. Although the units were all locally referred to as “Neonatal Intensive Care Units” (NICU), they actually consisted of a mixture of special care (Level 2 or SCNU) and Intensive care (Level 3 - NICU) units. Even when viewed through the lens of the requirements of SCNU, many centers including “tertiary” centers had challenges.
Interestingly, we noted that in the NUs in the hospitals that had records of birth weights, 51.7% of the babies admitted weighed 2500 g or more. In the authors’ experience, not all the normal weight term infants admitted to the NU are sick. Some just require extra observation and monitoring; for example, respiratory rates or blood sugar estimations, in the initial stages after which they are transferred out to the mothers in the post-natal wards. Some late preterm babies too may weigh more than 2500 g. We believe the term “high risk/small and sick babies” may be more appropriate than the conventional “small and sick babies”, when dealing with newborns needing extra care, in LMIC. It is possible that the greater numbers of admissions were partly due to the high-risk nature of these pregnancies and because of limited monitoring capabilities for babies in the postnatal ward.
In 5 of 8 facilities with the data, more than a third of inborn babies were admitted to the neonatal units (Table 1). As noted earlier, some of these admissions were to provide “extra rest of the mothers”. While this may be important, it adds to the workload of the already over-burdened staff in the NUs, results in overcrowding, needless use of formula feeds and potential risk of cross- infections.
Bed strength and human resources
Professional bodies, such as the American Academy of Pediatrics), the National Neonatology Forum of India), organizations such as UNICEF, India and Ministries of Health in some LMIC, such as the Ministry of Health and Family Welfare, India have developed recommendations on bed strength, spacing and staffing [8, 10,11,12]. Recommendations are often based on the number of deliveries and do not in general, consider out-born admissions, that add to the workload, both by numbers and also with acuity. As shown in Table 2, hospitals in Indonesia and India had higher bed strengths, but the numbers of neonatal beds were much lower in most of the Ugandan hospitals. Placing multiple babies in a cot is not uncommon in LMIC. This carries increased risk of infection and places an additional strain on the care providers.
In this study there was a higher proportion of Pediatricians and nurses in Indonesia and India than in Uganda, but even in these facilities, the nurse -patient ratio was inadequate. Shortage of nursing staff was a challenge with one nurse covering 15 to 30 babies in 3 of the hospitals in the night shift. In LMIC, due to inadequate skilled staff, task-shifting to or task-sharing with trained but less skilled staff or even family members for some of the non-specialized care may be essential until the countries can afford to provide adequate staff [13].
With increasing proportion of facility births and high mortality among preterm and low birth weight babies, there is growing need for focus on the special requirements of high-risk/small babies and those with problems. Thus, while the families, community health workers and midwives play important roles, there is an increasing need for Pediatricians/Neonatologists and Pediatric/neonatal nurses with special expertise and interest in newborn care. Shortage and maldistribution of suitable health care providers have also been highlighted as key issues in other studies on newborn care from India and Indonesia [14, 15].
Transport
We noted that although many hospitals had ambulances, they were not used for transporting babies from the birth place at home or the peripheral centers to the referral hospitals. When babies are brought into the referral centers, they are mostly accompanied by the mother and other family members, but have not had the benefit of stabilization before or during transport. Although skin to skin contact may provide some temperature support, without additional care during transport, some of these vulnerable babies may reach referral centers in moribund states. Mapping of suitable referral centers, appropriate dissemination of this information and use of mobile phones may assist in initial stabilization of babies with problems and better facilitate transport to the appropriate referral center. Ideally, the at- risk mothers and those with anticipated deliveries of small babies should be referred in a timely manner to suitable referral centers.
Maintenance of records and effective use and reporting of data
Data maintenance was a major challenge. For instance, in the Ugandan hospitals, birth weight was not available for all babies and gestational age was often not noted. While some of the information may be on individual case sheets, they were not consistently or correctly available in registers or in the consolidated facility records that fed into the country health information systems (HIS). Since “complications of prematurity” is widely recorded as the most common cause of neonatal mortality, this deficiency has serious implications. Accurate data is critical for the HIS, for internal review (such as perinatal/neonatal death audits), as well as for improving quality of care.
Neonatal mortality showed significant variations in the different facilities. Some of the smaller facilities with fewer admissions had a lower mortality probably due to fewer complicated cases and some sick babies being sent to the larger centers. Comparison of mortality rates across hospitals is difficult because of a variety of influencing factors. While quality of care is important, it is well known that the types of babies cared for also matter. For example, out-born admissions are often sicker and have higher mortality rates [16]. A more comprehensive assessment of neonatal mortality can be obtained by evaluating stillbirths, particularly, fresh/intrapartum stillbirths, since in some centers, certain neonatal deaths at birth may be recorded as stillbirths [17]. In some centers in Uganda, fresh stillbirth rates were reported to be as high as 65.5% of total stillbirths.
Mortality rates also may be under-reported where babies are discharged against medical advice (DAMA). DAMA accounted for 0.4 to 20% of admissions. The outcome of these babies is unknown but may be presumed to be poor, since a major factor in DAMA is the fact that the baby is so sick that the relatives feel that further care is futile. Other potential reasons for DAMA include non-affordability of care where payment is required, inadequate communication strategies and poor infrastructural support to relatives [18].
Additionally, data on neonatal deaths may be under-reported when out-born babies are admitted in the Pediatric wards and not in the NU. These are frequently babies who have suspected or frank infections and have a higher risk of dying. These deaths may not be included in the total facility newborn deaths, unless such deaths in the Pediatric wards get disaggregated according to age and these newborn deaths get consolidated with the deaths from the NU, a process that may be challenging.
Components for basic neonatal resuscitation
A newborn corner in the delivery room, and reusable self-inflating bags with masks were present in all the hospitals studied. Some facilities used a common suction machine for mothers and babies in the delivery room, which carries the potential risk of excessive negative pressure, leading to apnea and bradycardia in the baby if pressure is not adjusted appropriately with each use. Similarly, having larger, 500 mL. bags carry the risk of volume trauma, as even the normal weight term baby requires only 6–8 ml/kg of tidal volume for which the conventional newborn size bag (220–240 ml) is more than adequate [19]. Care providers need to be trained and supervised/mentored to achieve adequate mask seal and provide appropriate ventilation [20].
Safe use of oxygen
Many facilities in LMIC, as in the Ugandan hospitals in this study, depend on oxygen from cylinders or oxygen concentrators without blenders. The capability to provide appropriate concentrations of oxygen and consistent monitoring with pulse oximeters, are essential to reduce retinopathy of prematurity (ROP). India contributes to 10% of worldwide cases of blindness and visual impairment from ROP, highlighting the importance of safe oxygen use; prevention being far better than cure [21].
CPAP
CPAP was available in almost all the centers. CPAP also requires the safe administration of oxygen, as only select equipment, such as the Pumani bubble CPAP, have the capability of in built regulation of oxygen concentration (Website-http://hadleighhealthtechnologies.com/pumani-bcpap/).
Kangaroo mother care (KMC)
The immediate and long-term advantages of KMC have been well documented [22]. All facilities practiced KMC to some extent, but implementation needs to be further strengthened and expanded. The value of mothers or female relations in the care of these babies has been documented earlier in LMIC as in India with beneficial effects and without necessarily causing increased infection. It can also help empower women resulting in earlier discharge and, subsequently, better care at home [23, 24] More recently, Family Centered Newborn Care (FCNC), a “client focused “practice to promote and support a partnership between the health care team and the family, with mothers/family members providing selected non-specialized care for babies is gaining increasing acceptance around the world. In a randomized controlled trial, the intervention reduced health care providers’ workload and increased family members’ competence in infant care at home. There was no difference in nosocomial infections between the groups, and it also promoted pre-discharge exclusive breastfeeding [25].
Extra support for temperature maintenance
Other methods of temperature support in this study included overhead radiant warmers or open care systems and incubators [26]. Overhead warmers, available in a number of varieties including more economical versions, allow ready access to the baby and, in general, are easier to clean and maintain. They are associated with increased insensible water loss, but this can be overcome to some extent with the administration of additional fluids, especially in the weight and gestational age groups that often constitute the priority in LMIC. Studies on associated morbidities including infections have been variable but the numbers evaluated have been small and have not shown any significant differences [27]. Temperature monitoring is important and axillary temperature is more commonly used, as was noted in this study, with less risk of trauma and cross infection [28]. Despite the fact that thermometers are low cost commodities, only 5 facilities used a separate thermometer for every baby.
Procurement and maintenance of essential commodities
All the facilities studied had equipment and supplies required for basic essential newborn care, including in the delivery room, and met some of the requirements for high risk and sick babies. Every Woman, Every Child (2012) through the UN Commission for Life Saving Commodities, identified four products for newborn care, namely, antenatal corticosteroids for preterm births, chlorhexidine for cord care, equipment for basic resuscitation and antibiotics for treatment of neonatal sepsis [29]. While this brought attention to therapies that were not universally available or utilized appropriately, it also tended in some cases to inadvertently promote a ‘magic bullet’ approach instead of more comprehensive components covered in this study [30]. Although this study showed that most of the equipment was functional, maintenance of equipment, particularly donated equipment, is often a challenge in many facilities in LMIC. Inadequacy of equipment and commodities has also been reported to be a significant problem in a number of facilities in India and Indonesia [14, 31].
Feeding of high risk and small babies
It was encouraging that in all facilities mothers provided breast milk. Expressed human milk especially from their own mothers, has considerable advantages for preterm and low birth weight babies [32]. Milk banks are costly to establish and operate, require stringent quality control, and are available to a limited extent in LMIC. In this study, only one hospital in India had a milk bank. However, all the hospitals had the capability to store extra expressed breast milk for short periods in the refrigerator.
Small and sick babies tolerating feeds may be unable to suck adequately and need additional support in the form of tube feeding and, subsequently through use of cups. In India, the “paladai”, a traditional cup with an open spout or a “trough” like extension, is extensively used for feeding small babies and has distinct advantages over the conventional cup, with less spillage, and more ready acceptance by babies [33]. Challenges are also particularly high for achieving exclusive breastfeeding for babies who are separated from their mothers. Lactation consultants are not widely available in LMIC. It may be necessary to task-shift and train alternative workers to provide some basic lactation support for mothers in SCNU along with the nurses and physicians. Avoidance of bottles, not only for feeding but also for collection of human milk is beneficial as its presence sends a wrong message.
Management of jaundice
Neonatal jaundice is a major cause of morbidity in LMIC. Early detection at the community and facility levels, effective phototherapy with appropriate wavelength of light with monitoring of serum bilirubin levels can decrease the need for exchange transfusions. Innovative methods for early detection and management of jaundice are also essential [34, 35]. In countries with advanced health care systems, exchange transfusions have become uncommon due to earlier detection of jaundice and effective phototherapy. In contrast, exchange transfusions are far more common in LMIC. Hence, it is worth looking into ensuring that selected well-functioning SCNUs even at district levels have the resources and capabilities to manage jaundice effectively and perform exchange transfusions.
Prevention of infection
All hospitals in this study except one, reported having 24 h running water supply and resources for waste disposal including incinerators. Some of the essential elements of infection prevention include proper cleaning of surfaces, adequate supplies of clean linen, single use items, use of breast milk, safe administration of injections and intravenous fluids, and capability for identification of causative microbes along with susceptibility testing; areas in which there may be significant deficiencies in supplies and practices [36].
In most of the hospitals in Uganda, the family was expected to bring linen for their babies. The effectiveness of laundering procedures used in cleaning the linen was unclear. Hand washing linen and drying on lines or on the ground carry greater risks in contrast to machine washing and drying. It is essential that facilities supply clean linen kept ready for use.
We found that reprocessing resuscitation equipment was inadequate and inconsistent in the centers studied. Most used rubber suction bulbs, which cannot be opened to permit proper cleaning, and generally reused them after cleaning with just soap and water. Eight hospitals in Uganda had the translucent bulbs that could be opened. Except for two hospitals in Indonesia, there was minimal compliance with recommended reprocessing of resuscitation devices with disassembly, initial decontamination, proper cleaning with soap and water and high-level disinfection such as boiling or sterilization by autoclaving, followed by reassembly and safe storage [37]. These recommendations, however, can present significant challenges in being time-consuming and in having potential risks of losing small parts, resulting in poor compliance.
There may be a significant underestimation of infection relevant to newborn health in LMIC. The term “complications of prematurity” as a cause of death is likely to include infections in addition to conditions such to respiratory distress syndrome, apnea and intraventricular hemorrhage. Thus, the proportion of babies dying of infections is probably greater than what is generally portrayed, especially as diagnosis of infections poses challenges. A high incidence of neonatal sepsis has been reported in some hospitals [38]. When quality of care is poor, preterm babies may die more often due to initial problems such as birth asphyxia or breathing difficulties. However, as care improves and babies survive for longer periods, prevention of nosocomial infection assumes an even greater importance.
Treatment of infection
The facilities studied had access to a number of essential antibiotics, but it was not within the scope of this study to determine actual antibiotic usage. Antibiotic resistance has grown to the extent that options for appropriate alternatives are limited and may not always be available. Countries should establish national guidelines for antibiotic therapy based on their local distribution of organisms and antibiotic sensitivity patterns, with periodic review as required. Appropriate antibiotic stewardship with avoidance of needless administration is also essential to decrease antimicrobial resistance.
Intravenous fluid administration
Although all facilities had resources for administration of intravenous fluid therapy, most had to mix their fluids, with potential risk for infection. Additionally, most facilities in Uganda had only adult infusion sets, through which it is difficult to safely infuse the small volumes required by babies.
Limitations
This study provides a snapshot of some of the resources in a limited number of referral facilities caring for high risk/ small and sick newborns. Variations may be even greater in facilities in LMIC. The data were self-reported, and basic components such as weight of babies and gestational age were not available for some centers. These are not only challenges but highlight the existing status in some centers, notably in Sub-Saharan Africa.
Additional elements to be considered
While the physical requirements related to at-risk, small and sick baby care are important, in this study we were unable to evaluate certain additional components noted below that can have further impact on neonatal mortality.
Improving quality of care (QoC)
WHO with partners has highlighted the importance of compassionate and good QoC at facility level [39]. In many LMIC, there is often a significant variation in the existing quality of care, with some hospitals providing excellent care but with many others having neither the required skills, supplies nor the motivation, resulting in poorer quality care including inadequate pain management [40].
Health system strengthening with links between facilities and communities
Facility care is also incomplete without health system strengthening. In addition, facility/ community links, supportive supervision of trained community health workers and participatory involvement of the community through multiple strategies is essential.
Prioritizing low hanging fruits
As funds will not always meet the demand, it is essential that decisions are taken involving key stake holders to prioritize the order and the extent to which the various components need to be implemented, keeping equity and costing in mind.
Too little, too late; too much, too soon
As has been noted in maternal care, there is always a risk of doing too little too late and too much too soon [41]. An example of the former is, despite promoting facility deliveries to improve outcome, emphasis in some areas has still focused only on “essential newborn care” and the preparation of facilities to go further to care for the at-risk and sick babies has been inadequate. At the same time, progressing too quickly to instituting intensive care including mechanical ventilation and related interventions, without having the basic resources and skills to ensure competent, compassionate, quality based special/level II care, with adequate infection prevention, may have undesired effects. In establishing appropriate care for the newborn in whom, among other issues, the brain is still developing, the well-known dictum “Do no harm” has a very special significance.