Harris DL, Battin MR, Weston PJ, Harding JE. Continuous glucose monitoring in newborn babies at risk of hypoglycemia. J Pediatr. 2010;157(2):198–202.
Article
PubMed
Google Scholar
Szymonska I, Jagla M, Starzec K, Hrnciar K, Kwinta P. The incidence of hyperglycaemia in very low birth weight preterm newborns. Results of a continuous glucose monitoring study--preliminary report. Dev Period Med. 2015;19(3 Pt 1):305–12.
PubMed
Google Scholar
McKinlay CJD, Alsweiler JA, Ansell JM, Anstice NS, Chase JG, Gamble GD, et al. Neonatal glycemia and neurodevelopmental outcomes at two years. N Engl J Med. 2015;373:1507–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ranger M, Chau CM, Garg A, Woodward TS, Beg MF, Bjornson B, et al. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm. PLoS One. 2013;8(10):e76702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uettwiller F, Chemin A, Bonnemaison E, Favrais G, Saliba E, Labarthe F. Real-time continuous glucose monitoring reduces the duration of hypoglycemia episodes: a randomized trial in very low birth weight neonates. PLoS One. 2015;10(1):e0116255.
Article
PubMed
PubMed Central
Google Scholar
Hume R, McGeechan A, Burchell A. Failure to detect preterm infants at risk of hypoglycemia before discharge. J Pediatr. 1999;134(4):499–502.
Article
CAS
PubMed
Google Scholar
Mizumoto H, Kawai M, Yamashita S, Hata D. Intraday glucose fluctuation is common in preterm infants receiving intermittent tube feeding. Pediatr Int. 2016;58(5):359–62.
Article
CAS
PubMed
Google Scholar
Nakamura T, Hatanaka D, Nakamura M, Kusakari M, Takahashi H, Kamohara T. Serial investigation of continuous glucose monitoring in a very low birth weight infant with transient late-onset hyperglycemia. Fukushima J Med Sci. 2016;62(2):108–11.
Article
PubMed
PubMed Central
Google Scholar
Mola-Schenzle E, Staffler A, Klemme M, Pellegrini F, Molinaro G, Parhofer KG, et al. Clinically stable very low birthweight infants are at risk for recurrent tissue glucose fluctuations even after fully established enteral nutrition. Arch Dis Child Fetal Neonatal Ed. 2015;100(2):F126–31.
Article
CAS
PubMed
Google Scholar
Poscia A, Mascini M, Moscone D, Luzzana M, Caramenti G, Cremonesi P, et al. A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1). Biosens Bioelectron. 2003;18(7):891–8.
Article
CAS
PubMed
Google Scholar
Baumeister FA, Rolinski B, Busch R, Emmrich P. Glucose monitoring with long-term subcutaneous microdialysis in neonates. Pediatrics. 2001;108(5):1187–92.
Article
CAS
PubMed
Google Scholar
Hildingsson U, Sellden H, Ungerstedt U, Marcus C. Microdialysis for metabolic monitoring in neonates after surgery. Acta Paediatr. 1996;85(5):589–94.
Article
CAS
PubMed
Google Scholar
McGarraugh G. The chemistry of commercial continuous glucose monitors. Diabetes Technol Ther. 2009;11(Suppl 1):S17–24.
CAS
PubMed
Google Scholar
Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Vanhole C, VanWeissenbruch M, Midgley P, et al. Validation of the continuous glucose monitoring sensor in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98(2):F136–40.
Article
CAS
PubMed
Google Scholar
Harris DL, Weston PJ, Harding JE. Mothers of babies enrolled in a randomized trial immediately after birth report a positive experience. J Perinatol. 2014;34(4):280–3.
Article
CAS
PubMed
Google Scholar
Signal M, Le Compte A, Harris DL, Weston PJ, Harding JE, Chase JG, et al. Impact of retrospective calibration algorithms on hypoglycemia detection in newborn infants using continuous glucose monitoring. Diabetes Tech Ther. 2012;14(10):883–90.
Article
CAS
Google Scholar
Peet AC, Kennedy DM, Hocking MD, Ewer AK. Near-patient testing of blood glucose using the Bayer Rapidlab 860 analyser in a regional neonatal unit. Ann Clin Biochem. 2002;39(Pt 5):502–8.
Article
CAS
PubMed
Google Scholar
Tiangco C, Andar A, Quarterman J, Ge X, Sevilla F, 3rd, Rao G, et al. Measuring transdermal glucose levels in neonates by passive diffusion: an in vitro porcine skin model. Anal Bioanal Chem 2017;409(13):3475-3482.
Mauras N, Beck RW, Ruedy KJ, Kollman C, Tamborlane WV, Chase HP, et al. Lack of accuracy of continuous glucose sensors in healthy, nondiabetic children: results of the Diabetes Research in Children Network (DirecNet) accuracy study. J Pediatr. 2004;144(6):770–5.
Article
PubMed
Google Scholar
Michel A, Kuster H, Krebs A, Kadow I, Paul W, Nauck M, et al. Evaluation of the Glucometer Elite XL device for screening for neonatal hypoglycaemia. Eur J Pediatr. 2005;164(11):660–4.
Article
PubMed
Google Scholar
Rosenthal M, Ugele B, Lipowsky G, Kuster H. The Accutrend sensor glucose analyzer may not be adequate in bedside testing for neonatal hypoglycemia. Eur J Pediatr. 2006;165(2):99–103.
Article
CAS
PubMed
Google Scholar
Facchinetti A, Sparacino G, Cobelli C. Modeling the error of continuous glucose monitoring sensor data: critical aspects discussed through simulation studies. J Diabetes Sci Technol. 2010;4(1):4–14.
Article
PubMed
PubMed Central
Google Scholar
Biagi L, Ramkissoon CM, Facchinetti A, Leal Y, Vehi J. Modeling the error of the medtronic paradigm veo enlite glucose sensor. Sensors (Basel). 2017;17(6).
Fonseca VA, Grunberger G, Anhalt H, Bailey TS, Blevins T, Garg SK, et al. Continuous glucose monitoring: a consensus conference of the american association of clinical endocrinologists and american college of endocrinology. Endocr Pract. 2016;22(8):1008–21.
Article
PubMed
Google Scholar
Damiano ER, McKeon K, El-Khatib FH, Zheng H, Nathan DM, Russell SJ. A comparative effectiveness analysis of three continuous glucose monitors: the Navigator, G4 Platinum, and Enlite. J Diabetes Sci Technol. 2014;8(4):699–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Signal M, Thomas F, Shaw GM, Chase JG. Complexity of continuous glucose monitoring data in critically ill patients: continuous glucose monitoring devices, sensor locations, and detrended fluctuation analysis methods. J Diabetes Sci Technol. 2013;7(6):1492–506.
Article
PubMed
PubMed Central
Google Scholar
Facchinetti A, Del Favero S, Sparacino G, Castle JR, Ward WK, Cobelli C. Modeling the glucose sensor error. IEEE Trans Biomed Eng. 2014;61(3):620–9.
Article
PubMed
Google Scholar
Thomas F, Signal M, Harris DL, Weston PJ, Harding JE, Shaw GM, et al. Continuous glucose monitoring in newborn infants: how do errors in calibration measurements affect detected hypoglycemia? J Diabetes Sci Technol. 2014;8(3):543–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breton MD, Shields DP, Kovatchev BP. Optimum subcutaneous glucose sampling and fourier analysis of continuous glucose monitors. J Diabetes Sci Technol. 2008;2(3):495–500.
Article
PubMed
PubMed Central
Google Scholar
Kovatchev BP, Shields D, Breton M. Graphical and numerical evaluation of continuous glucose sensing time lag. Diabetes Technol Ther. 2009;11(3):139–43.
Article
PubMed
PubMed Central
Google Scholar
Schmelzeisen-Redeker G, Schoemaker M, Kirchsteiger H, Freckmann G, Heinemann L, Del Re L. Time delay of CGM sensors: relevance, causes, and countermeasures. J Diabetes Sci Technol. 2015;9(5):1006–15.
Article
PubMed
PubMed Central
Google Scholar
Breton M, Kovatchev B. Analysis, modeling, and simulation of the accuracy of continuous glucose sensors. J Diabetes Sci Technol. 2008;2(5):853–62.
Article
PubMed
PubMed Central
Google Scholar
Baumeister FA, Hack A, Busch R. Glucose-monitoring with continuous subcutaneous microdialysis in neonatal diabetes mellitus. Klin Padiatr. 2006;218(4):230–2.
Article
CAS
PubMed
Google Scholar
Tiberi E, Cota F, Barone G, Perri A, Romano V, Iannotta R, et al. Continuous glucose monitoring in preterm infants: evaluation by a modified Clarke error grid. Ital J Pediatr. 2016;42:29.
Article
PubMed
PubMed Central
Google Scholar
Chase JG, Pretty CG, Pfeifer L, Shaw GM, Preiser JC, Le Compte AJ, et al. Organ failure and tight glycemic control in the SPRINT study. Crit Care. 2010;14(4):R154.
Article
PubMed
PubMed Central
Google Scholar
Signal M, Le Compte A, Shaw GM, Chase JG. Glycemic levels in critically ill patients: are normoglycemia and low variability associated with improved outcomes? J Diabetes Sci Technol. 2012;6(5):1030–7.
Article
PubMed
PubMed Central
Google Scholar
Krinsley JS, Preiser JC. Time in blood glucose range 70 to 140 mg/dl >80% is strongly associated with increased survival in non-diabetic critically ill adults. Crit Care. 2015;19:179.
Article
PubMed
PubMed Central
Google Scholar
Pretty CG, Chase JG, Le Compte A, Shaw GM, Signal M. Hypoglycemia detection in critical care using continuous glucose monitors: an in silico proof of concept analysis. J Diabetes Sci Technol. 2010;4(1):15–24.
Article
PubMed
PubMed Central
Google Scholar
Signal M, Gottlieb R, Le Compte A, Chase JG. Continuous glucose monitoring and trend accuracy: news about a trend compass. J Diabetes Sci Technol. 2014;8(5):986–97.
Article
PubMed
PubMed Central
Google Scholar
Thomas F, Signal M, Chase JG. Using continuous glucose monitoring data and detrended fluctuation analysis to determine patient condition: a review. J Diabetes Sci Technol. 2015;9(6):1327–35.
Article
PubMed
PubMed Central
Google Scholar
Signal M, Le Compte A, Harris DL, Weston PJ, Harding JE, Chase JG, et al. Using Stochastic modelling to identify unusual continuous glucose monitor measurements and behaviour, in newborn infants. Biomed Eng Online. 2012;11:45.
Article
PubMed
PubMed Central
Google Scholar
Srinivasan G, Pildes RS, Cattamanchi G, Voora S, Lilien LD. Plasma glucose values in normal neonates: a new look. J Pediatr. 1986;109(1):114–7.
Article
CAS
PubMed
Google Scholar
Diwakar KK, Sasidhar MV. Plasma glucose levels in term infants who are appropriate size for gestation and exclusively breast fed. Arch Dis Child Fetal Neonatal Ed. 2002;87(1):F46–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoseth E, Joergensen A, Ebbesen F, Moeller M. Blood glucose levels in a population of healthy, breast fed, term infants of appropriate size for gestational age. Arch Dis Child Fetal Neonatal Ed. 2000;83(2):F117–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Güemes M, Rahman SA, Hussain K. What is a normal blood glucose? Arch Dis Child. 2016;101(6):569–74.
Article
PubMed
Google Scholar
Wackernagel D, Dube M, Blennow M, Tindberg Y. Continuous subcutaneous glucose monitoring is accurate in term and near-term infants at risk of hypoglycaemia. Acta Paediatr. 2016;105(8):917–23.
Article
CAS
PubMed
Google Scholar
Kaiser JR, Bai S, Gibson N, Holland G, Lin TM, Swearingen CJ, et al. Association between transient newborn hypoglycemia and fourth-grade achievement test proficiency: a population-based study. JAMA Pediatr. 2015;169(10):913–21.
Article
PubMed
Google Scholar
Ennis K, Dotterman H, Stein A, Rao R. Hyperglycemia accentuates and ketonemia attenuates hypoglycemia-induced neuronal injury in the developing rat brain. Pediatr Res. 2015;77(1–1):84–90.
Article
PubMed
Google Scholar
Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest. 2007;117(4):910–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKinlay CJD, Alsweiler JM, Anstice NS, Burakevych N, Chakraborty A, Chase JG, et al. A prospective cohort study of neonatal glycemia and neurodevelopmental outcomes at 4.5 years. JAMA Pediatr. 2017;171(10):1–12.
Google Scholar
Beardsall K, Ogilvy-Stuart AL, Ahluwalia J, Thompson M, Dunger DB. The continuous glucose monitoring sensor in neonatal intensive care. Arch Dis Child Fetal Neonatal Ed. 2005;90(4):F307–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beardsall K. Measurement of glucose levels in the newborn. Early Hum Dev. 2010;86(5):263–7.
Article
CAS
PubMed
Google Scholar
Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Vanhole C, Palmer CR, Ong K, et al. Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the NIRTURE study. J Pediatr. 2010;157(5):715–9.e1-3.
Article
PubMed
Google Scholar
Pertierra-Cortada A, Ramon-Krauel M, Iriondo-Sanz M, Iglesias-Platas I. Instability of glucose values in very preterm babies at term postmenstrual age. J Pediatr. 2014;165(6):1146–53.e2.
Article
CAS
PubMed
Google Scholar
Iglesias Platas I, Thio Lluch M, Pociello Alminana N, Morillo Palomo A, Iriondo Sanz M, Krauel VX. Continuous glucose monitoring in infants of very low birth weight. Neonatology. 2009;95(3):217–23.
Article
PubMed
Google Scholar
Beardsall K, Vanhaesebrouck S, Ogilvy-Stuart AL, Vanhole C, Palmer CR, van Weissenbruch M, et al. Early insulin therapy in very-low-birth-weight infants. N Engl J Med. 2008;359(18):1873–84.
Article
CAS
PubMed
Google Scholar
Oh W, Poindexter BB, Perritt R, Lemons JA, Bauer CR, Ehrenkranz RA, et al. Association between fluid intake and weight loss during the first ten days of life and risk of bronchopulmonary dysplasia in extremely low birth weight infants. J Pediatr. 2005;147(6):786–90.
Article
PubMed
Google Scholar
Collins JE, Leonard JV. Hyperinsulinism in asphyxiated and small-for-dates infants with hypoglycaemia. Lancet. 1984;2(8398):311–3.
Article
CAS
PubMed
Google Scholar
Hoe FM, Thornton PS, Wanner LA, Steinkrauss L, Simmons RA, Stanley CA. Clinical features and insulin regulation in infants with a syndrome of prolonged neonatal hyperinsulinism. J Pediatr. 2006;148(2):207–12.
Article
CAS
PubMed
Google Scholar
Nadeem M, Murray DM, Boylan GB, Dempsey EM, Ryan CA. Early blood glucose profile and neurodevelopmental outcome at two years in neonatal hypoxic-ischaemic encephalopathy. BMC Pediatr. 2011;11:10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basu SK, Kaiser JR, Guffey D, Minard CG, Guillet R, Gunn AJ. Hypoglycaemia and hyperglycaemia are associated with unfavourable outcome in infants with hypoxic ischaemic encephalopathy: a post hoc analysis of the CoolCap Study. Arch Dis Child Fetal Neonatal Ed. 2016;101(2):F149–55.
Article
PubMed
Google Scholar
Basu SK, Salemi JL, Gunn AJ, Kaiser JR. Hyperglycaemia in infants with hypoxic-ischaemic encephalopathy is associated with improved outcomes after therapeutic hypothermia: a post hoc analysis of the CoolCap Study. Arch Dis Child Fetal Neonatal Ed. 2017;102(4):299–306.
Article
Google Scholar
Chouthai NS, Sobczak H, Khan R, Subramanian D, Raman S, Rao R. Hyperglycemia is associated with poor outcome in newborn infants undergoing therapeutic hypothermia for hypoxic ischemic encephalopathy. J Neonatal Perinatal Med. 2015;8(2):125–31.
Article
PubMed
Google Scholar
Wong DS, Poskitt KJ, Chau V, Miller SP, Roland E, Hill A, et al. Brain injury patterns in hypoglycemia in neonatal encephalopathy. Am J Neuroradiol. 2013;34(7):1456–61.
Article
CAS
PubMed
Google Scholar
Boardman JP, Hawdon JM. Hypoglycaemia and hypoxic-ischaemic encephalopathy. Dev Med Child Neurol. 2015;57(Suppl 3):29–33.
Article
PubMed
Google Scholar
McGowan JE, Perlman JM. Glucose management during and after intensive delivery room resuscitation. Clin Perinatol. 2006;33(1):183–96.
Article
PubMed
Google Scholar
van der Lugt NM, Smits-Wintjens VE, van Zwieten PH, Walther FJ. Short and long term outcome of neonatal hyperglycemia in very preterm infants: a retrospective follow-up study. BMC Pediatr. 2010;10:52.
Article
PubMed
PubMed Central
Google Scholar
Mohsen L, Abou-Alam M, El-Dib M, Labib M, Elsada M, Aly H. A prospective study on hyperglycemia and retinopathy of prematurity. J Perinatol. 2014;34(6):453–7.
Article
CAS
PubMed
Google Scholar
Alsweiler JM, Harding JE, Bloomfield FH. Neonatal hyperglycaemia increases mortality and morbidity in preterm lambs. Neonatology. 2013;103(2):83–90.
Article
CAS
PubMed
Google Scholar
Alsweiler JM, Harding JE, Bloomfield FH. Tight glycemic control with insulin in hyperglycemic preterm babies: a randomized controlled trial. Pediatrics. 2012;129(4):639–47.
Article
PubMed
Google Scholar
Agus MS, Wypij D, Hirshberg EL, Srinivasan V, Faustino EV, Luckett PM, et al. Tight glycemic control in critically ill children. N Engl J Med. 2017;376(8):729–41.
Phillip M, Battelino T, Atlas E, Kordonouri O, Bratina N, Miller S, et al. Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med. 2013;368(9):824–33.
Article
CAS
PubMed
Google Scholar
Le Compte A, Chase JG, Lynn A, Hann C, Shaw G, Wong XW, et al. Blood glucose controller for neonatal intensive care: virtual trials development and first clinical trials. J Diabetes Sci Technol. 2009;3(5):1066–81.
Article
PubMed
PubMed Central
Google Scholar
Le Compte AJ, Lynn AM, Lin J, Pretty CG, Shaw GM, Chase JG. Pilot study of a model-based approach to blood glucose control in very-low-birthweight neonates. BMC Pediatr. 2012;12:117.
Article
PubMed
PubMed Central
Google Scholar
Beardsall K, Pesterfield CL, Acerini CL. Neonatal diabetes and insulin pump therapy. Arch Dis Child Fetal Neonatal Ed. 2011;96(3):F223–4.
Article
PubMed
Google Scholar